
13

Much Ado About Nothing
A brief survey of the concept of nothingness

from antiquity to modern systems

Kenneth Baclawski
Washington Academy of Sciences

Abstract
Whether it is called “nothing,” “no value,” “vacuum,” “empty” or
“zero” the concept of nothing has been a matter of philosophical as
well as pragmatic disagreement since antiquity and continuing today.

Introduction
THE CONCEPT OF NOTHING, whether the abstract notion of nonex-
istence or the physical vacuum, has been debated since at least the fth
century BCE. The related notion of zero has an even longer history. One
might think that such issues would have been settled long ago, yet in many
ways the opposite is the case. The properties of the physical notion of a
vacuum is currently a major unsolved problem. While the mathematical
notions of zero and the empty set are well-established, modern computer
programming and data languages dier markedly in how they deal with
nothingness. The dierences have a signicant eect on how such languages
behave when encountering nothingness, which is a continuing source of con-
fusion. In this survey we outline some of the history of nothingness. We
then discuss the main notions of nothingness in modern data and program-
ming languages. Finally, we list some of the many explanations for why
one might have nothing.

History
There are two distinct uses of zero. The rst is for a place-holder

in positional numbering systems when a place has no value. The second
is for the absence of a quantity. The Sumerians had a base 60 positional
numbering system as early as 2500 BCE, and used a space for a position
with no value, but did not have a symbol for zero. By 1770 BCE, the
Egyptians had a symbol for zero in accounting texts (Gheverghese, 2011),
but their numbering system was not positional (O’Connor and Robertson,
2000). The Babylonians inherited the Sumerian positional numbering sys-

Summer 2023



14

tem and subsequently introduced a symbol for a position with no value,
but never used it alone. The ancient Greeks had neither a symbol for zero
nor a positional numbering system, in spite of being aware of Babylonian
mathematics (Wallin, 2002). The reluctance of the ancient Greeks to use
zero may be due to their philosophical arguments about the nature of ex-
istence and the vacuum. This reluctance continued well into subsequent
civilizations, including Medieval Europe. It wasn’t until around 650 CE
that Brahmagupta in India formalized arithmetic operations using zero
(Wallin, 2002).

One of the earliest Greek philosophers to discuss the concept of
nothingness was Parmenides at around 500 BCE. At this time nothingness
meant nonexistence and included the physical void or vacuum. Parmenides
argued that the very act of speaking about nothing implies that it exists,
which contradicts the denition of nothing as nonexistence (Russell, 1995).
On the other hand, as was pointed out by Leucippus, the co-founder of
atomism with his student Democritus, one can only have motion if there
is a void through which matter moves. It then follows that there must be
a void between the atoms. Little is known about Leucippus, and there is
a considerable controversy about whether Leucippus ever existed, starting
with Epicurus at around 400 BCE and continuing to modern times (Skor-
doulis & Koutalis, 2013, p. 467; Graham, 2008, pp. 333–335). If there was
no such philosopher as Leucippus, we have the ironic situation that the
rst person to speculate about the existence of nonexistence did not exist.

Unfortunately, the early Greek philosophers did not possess a tech-
nology that was adequate for experimentally testing the speculations of
the atomists so the theory was not generally accepted at the time. Hero of
Alexandria tried unsuccessfully to create an articial vacuum in the rst
century CE, and partial vacuums were not demonstrated until the 17th
century. Extremely high articial vacuums can now be achieved, and outer
space is an even more extreme vacuum than articial vacuums, but even
if all particles of matter were removed from a small volume, there would
still be photons and neutrinos, as well as dark energy, virtual particles,
and other aspects of the quantum vacuum. While a perfect vacuum is
not currently regarded as being physically realizable, it is meaningful to
speak of the lowest possible energy state of physical space, which is called
the quantum vacuum, zero-point eld or vacuum state. The properties of

Washington Academy of Sciences



15

the vacuum state is currently a major unsolved problem which has been
very well covered by Sethanne Howard in another article in this same issue
(Howard, 2023).

As with the physical notion of a vacuum, the ontological notion
of nonexistence is also an unsolved problem, or at least a problem that
remains controversial. After the Greeks, many philosophers attempted to
understand nothingness, sometimes giving the notion a religious or spiritual
interpretation. John the Scot (c. 815–877) identied nothingness with God
(Russell, 1995, pp. 396-401). Hegel in his Science of Logic asserted that
“pure nothing” is the same as “pure being,” but he then contradicted this
assertion in the next section by asserting, “But it is equally true that they
[pure nothing and pure being] are not undistinguished from each other,
that, on the contrary, they are not the same▷ ▷ ▷” Hegel then proceeds to
resolve the contradiction by introducing the relationship of “becoming”
between pure nothing and pure being. To Hegel pure being is closely related
to Geist, which can be roughly translated into three English meanings:
ghost, spirit, and mind or intellect. (Hegel, 1812-1816, §§ 132-134).

Modern philosophers have continued to grapple with nothingness. In
1929 Martin Heidegger gave his Freiburg inaugural lecture entitled “What
is Metaphysics?” (Heidegger, 1929). In this lecture he announced “Das
Nichts selbst nichtet” (Cartlidge, n.d.). Understanding this or translating
it to English is problematic because Heidegger commonly invented new
words to help convey his ideas. Unfortunately, doing this has made it
dicult to understand his intentions not only in his native language but also
in translations to other languages. The problematic word in Heidegger’s
announcement is “nichtet,” which can be interpreted as the verb form of
the word “nicht” (“not” in English). As there is no such verb in English,
it has been variously translated as “annihilates,” “nothings” or “noths,”
where the last one is a back-formation obtained from the word “nothing”
when regarded as being the gerund of a verb. This leads to the speculation
that Heidegger was attempting subtle humor by asserted the existence of
nonexistence using a nonexistant word, but that seems unlikely. In any
case, one can translate the announcement variously as “Nothingness itself
annihilates,” “Nothingness itself nothings” or “Nothingness itself noths.”

Here are a few quotes from Heidegger’s lecture as translated by

Summer 2023



16

Goth (2013). To improve readability, hyphenated terms in the translation
were changed to common English words, e.g., “no-thing” was changed to
“nothingness.”

But why do we trouble ourselves about this nothingness? In
fact, nothingness is indeed turned away by science and given
up [on] as the null and void [das Nichtige]. But if we give up
nothingness in such a way, do we not indeed accept it? But can
we talk about an acceptance if we accept nothing [nichts]? Yet
maybe all this back and forth has already turned into empty
verbal wrangling. Science must then renew its seriousness and
assert its soberness in opposition to this, so that it has only to
do with being [um das Seiende geht].

Note how Heidegger appears to be harkening back to the argument of
Parmenides. Heidegger then repeats the argument of Parmenides in various
ways, as for example the following:

Accordingly, every answer to this question is impossible from
the outset. For it necessarily starts out in the form: nothingness
“is” this or that. Question and answer alike are themselves just
as nonsensical with respect to nothingness.

Finally, he announces “Das Nichts selbst nichtet” but makes it clear that
the annihilation is not an occurrence of some sort whereby something else
annihilates or negates. Nothingness does the annihilation on its own.

This soon earned Heidegger fame as a purveyor of metaphysical
nonsense (Inwood, 1999). Nevertheless, Heidegger is often considered to be
among the most important and inuential philosophers of the 20th century.
One interpretation of Heidegger’s announcement is that in spite of the self-
contradictory aspects of nothingness as a concept, one can nevertheless
regard it as have its own kind of existence.1 In any case, I am reluctant to
claim that Heidegger’s announcement is not unmeaningless, since another
philosopher subsequently developed this idea into a rich body of popular
work.

1I suspect that Heidegger would disagree with this interpretation.

Washington Academy of Sciences



17

Jean-Paul Sartre was one of the many philosophers who were in-
uenced by Heidegger. Sartre is regarded as being the most prominent
existential philosopher, and his principal philosophical work is Being and
Nothingness (Sartre, 1943), an obvious reference to Heidegger’s principal
work Being and Time (Heidegger, 1927). As the title suggests, nothingness
is central to Sartre’s work. Beginning in the rst chapter, Sartre points out
that nothingness is something we experience as part of reality. The absence
of a family member or a lack of money are not just subjective nothings.
Starting from this thesis, Sartre developed a wide range of topics such as
consciousness, perception, social philosophy, self-deception, psychoanaly-
sis, and the question of free will. Sartre was a prolic writer having written
novels, short stories, plays, screenplays, autobiographical works as well as
philosophical and other essays. His work is richly symbolic and clearly
shows its basis in his philosophy.

There have been many other philosophers who have discussed noth-
ingness, but the examples in this section should give one an inkling of the
kinds of arguments that have been presented. None of the arguments have
been entirely refuted. Indeed, the argument of Parmenides can be used
to assert that a category is meaningful only if it potentially could have
members. For example, one could argue that the category of unicorns is
not meaningful, although the category of articles about unicorns is mean-
ingful. On the other hand, one could allow for the existence of nothingness
as asserted by Hegel, Heidegger and Sartre. We now give some examples
of both approaches in modern systems.

Nothingness in Information Systems
Modern computer languages dier in how they deal with nothing-

ness. The main distinction is whether nothingness should be regarded as
a special kind of value (as asserted by Heidegger and Sartre) or should be
no value at all (as suggested by Parmenides). The choice between these
two is neither trivial nor obvious, and there are important advantages and
disadvantages for the two choices. Specically, most major programming
languages have chosen to treat nothingness as a special value, while data
languages, such as the standard relational database language SQL, have
generally chosen to treat nothingness as the absence of a value.

Summer 2023



18

Programming Languages
Historically, a notion of nothingness in programming languages was

needed when programmers began to symbolically specify addresses (loca-
tions) of data in memory. There needed to be some default address when
the symbol does not specify any data, for example, because the data has
not yet been allocated a location in memory. Originally, this default ad-
dress was the address 0. The C language still allows one to specify the
default address with the digit 0 even though the actual default machine
address need not be an address all of whose bits are 0. Other program-
ming languages use names such as “null,” “NULL” or “nil.” Even in C it is
now considered preferable to use the NULL symbol rather than the digit 0.
Regardless of the specic name used, they are called null pointers or null
references. Tony Hoare invented the null reference in 1965 as part of the
ALGOL W language (Hoare, 2009).

Null pointers are commonly used to represent conditions such as
the end of a sequence of actions having unknown length or the result of an
action that did not produce any data. An important requirement for nulls
is that one can test for them by a simple comparison. In particular, if two
program variables that both have the null value are compared, then the
result is TRUE.

Accessing the data referenced by a data pointer is known as “deref-
erencing.” Because a null pointer does not point to a meaningful object,
attempting to dereference it may cause a run-time error or program crash.
This is called a null pointer exception. It is one of the most common types
of software weakness. Because of this Tony Hoare referred to his invention
of the null reference as a “billion dollar mistake” (Hoare, 2009).

While dereferencing a null reference is an exception in most pro-
gramming languages, this is not always the case. For example, in Lisp the
default value is called nil, and it can be used like any other value with well
dened results and no exceptions. Python is similar to Lisp except that nil
is called “None.” However, in either of these languages the disadvantage is
that if a use of nil/None was actually an error, then one could get into an
innite loop, which is arguably worse than a program crash. Objective-C
is another language where dereferencing nil is not an exception, although
nil is not treated as being an ordinary value. Unlike Lisp, dereferencing nil

Washington Academy of Sciences



19

is ignored in Objective-C. As with Lisp, erroneous uses of nil could result
in an innite loop.

For most programming languages where deferencing a null pointer
causes an exception, one can catch the exception and take appropriate
corrective action. Arguably it is better to generate an exception for an
invalid dereference operation than to process it or to ignore it, which will
just postpone the problem and make nding the error much more dicult.
Relational Database Languages

The notion of nothingness that is part of modern relational
databases was introduced by Codd’s original proposal in 1970 for the rela-
tional model (Codd, 1970), which is nearly contemporaneous with Hoare’s
invention of the null reference. The relational symbol for the lack of a value
in the eld of a record is NULL.

Ever since Codd introduced NULL, it was controversial. The main
problem is that the concept is underspecied, resulting in inconsistent im-
plementations. Even to the extent that it is specied, it is inconsistent, and
explanations for the inconsistencies are not convincing. Many researchers
have published, and continue to publish, proposals for correcting the di-
culties with NULL. For example, Date and Darwen advocated in their Third
Manifesto that the concept be eliminated entirely from relational database
systems, replacing it with the programming language concept (Darwen and
Date, 2006).

So what is the database NULL? As we mentioned in the previous
section above, a database NULL is the absence of a value, while for most
programming languages, null is one more value, albeit a special one. This
has a number of consequences. The rst is that comparing a database
NULL with another database NULL, even the same database NULL, results
in NULL, not TRUE. This makes sense because a database NULL means
that there is no value, so comparisons are meaningless. One consequence
is that one cannot use ordinary Boolean logic. The result of a logical
expression now has three possibilities rather than just two. In addition
to TRUE and FALSE, one must now admit the possibility of NULL. The
resulting logic is an example of a three-valued logic, while ordinary Boolean
logic is a two-valued logic. Strictly speaking the third “value” of the SQL

Summer 2023



20

three-valued logic is not a value but rather the absence of a value, but for
the purposes of evaluating a logical expression it is convenient to regard
the third possibility as being another value.

One of the consequences of the three-valued logic is that one cannot
test that the eld of a record has a value by comparing the eld with NULL.
Doing so will always produce NULL whether the eld has a value or not.
Relational database systems have a special syntax for this purpose. One
must say “eld IS NULL” or “eld IS NOT NULL.”

A more signicant problem with the database NULL is that it has
led to confusion. For example, the term “null value” is an oxymoron for
databases. Yet the phrase is used throughout database textbooks and
articles on the Web such as in Wikipedia. Textbook writers even go so far
as to make statements such as, “Nulls behave strangely in queries.” The
strangeness is entirely due to mistakenly believing that the database NULL
is a value. When one properly understands that the database NULL is the
absence of a value, then the strangeness disappears. Another example is,
“A weird aspect of nulls is that they are neither equal nor unequal to each
other.” Once again, the weirdness is due to a misunderstanding rather than
an intrinsic property of databases.

Unfortunately, while SQL generally regards NULL as being the ab-
sence of a value, it is not entirely consistent. For example, when records
are sorted, NULLs in dierent records are regarded as being equal.

Even Codd himself admitted that his concept of NULL was awed,
and he attempted to x it by introducing two dierent concepts of NULL
(Codd, 1990). However, this suggestion was never implemented, largely
because of the enormous increase in complexity that it would entail. For
example, logic would have to increase from being three-valued to being
four-valued. Furthermore, Codd’s suggestion would not have xed the var-
ious inconsistencies involving NULL. As we discuss below, it has the further
disadvantage that there are many more than just two NULL concepts, and
even the two NULL concepts suggested by Codd have their own subclas-
sications. Attempting to x the problem by making more distinctions is
clearly not a solution.

It is interesting to note that the inventors of their respective notions

Washington Academy of Sciences



21

of nothingness both regarded their inventions as a mistake.
Other Data Languages

More recently, data representations and data languages other than
the relational databases have become popular. Prominent examples include
the RDF and OWL representation languages as well as query languages
such as SPARQL. For the rest of this section, we assume some familiarity
with RDF and OWL.

A fundamental distinction between relational databases and
RDF/OWL is whether they are open or closed. A logical system satises a
closed world assumption (CWA) if some statements that are not currently
known to be true can be inferred to be false. By contrast if a logical system
satises the open world assumption (OWA), then lack of knowledge need
not imply falsity. There are many kinds of CWA logical systems as well as
many kinds of OWA logical systems, as well as logical systems that have
aspects of both assumptions. The advantage of CWA is that query process-
ing is much more ecient compared with OWA. However, CWA requires
that a situation be completely known to the database. This is acceptable
for a business database but is not reasonable for general knowledge queries.

A relational database is primarily CWA, but NULL can be regarded
as an OWA feature in the midst of a system that is otherwise CWA. Most
programming languages may be regarded as being CWA. Unlike relational
databases, programming language nulls are values and so cannot be re-
garded as being an OWA feature. RDF, OWL and their query languages
are dened to be OWA logical systems, although some aspects of CWA are
sometimes employed for the sake of eciency.

To give some idea of the consequences of OWA compared with CWA,
consider a university database where students may have a major in a de-
partment, but the university has decided that no student can major in
more than one department. Suppose that in spite of this rule a student
has declared that they are majoring in English and Computer Science. In
a CWA system, this would immediately result in an error because the ma-
jor constraint is not satised. In an OWA system, this might not be an
error. Instead, the OWA system would proceed to infer that English and
Computer Science are the same department. A cascade of other inferences

Summer 2023



22

might then ensue. For example, if a department is allowed to have no more
than one head, then the heads of English and Computer Science would
be inferred to be the same. Presumably, the cascade of inferences would
eventually result in an unacceptable inconsistency, but by then the original
reason for it might not be easy to trace.

In RDF and OWL the most common way to specify that a resource
does not have any value for a property is to have no statement that has the
resource as its subject and the property as its predicate. This is essentially
the same as a database record having a NULL eld. Indeed, some rela-
tional database implementations represent the fact that a eld is NULL by
omitting the eld in the record.

Another way that one can, in principle, specify that a resource does
not have a value for a property is to specify that its value is an empty list.
The advantage of the list construct is that it allows one to specify exactly
all of the values in a collection. In particular, it could be used to specify
exactly all of the values that a resource has for a property. Accordingly,
a list can be regarded as a CWA feature in the midst of a system that is
otherwise OWA.

Some Interpretations of Nothingness
Whether in programming languages or data languages, NULL can

arise for a great variety of reasons, and attempting to capture even a few
of these in a language would be very dicult if not impossible. Here is a
partial list of the reasons why NULL can occur.

1. The eld has a value but it isn’t known. There are a number of
variations on this. Here are a few of them:

(a) The value does exist somewhere, but the database does not have
it.

(b) The value has not yet been determined, but it presumably will
be determined at some point. For example, a customer has yet
to make a decision about a purchase.

(c) The value does exist in principle, and it might someday be deter-
mined, but there is no guarantee that it will ever be determined.

Washington Academy of Sciences



23

For example, a eld might have value 1 if P=NP and 0 if P ̸=NP.2

All of these may be regarded as examples of open world assumptions
in the midst of a system that is otherwise closed. They have the
common feature that the eld could, in principle, be specied with a
value at some time in the future.

2. The eld has no value because it isn’t applicable. Unlike the example
above, there is no possibility that such a eld could ever have a value.
This can happen for a variety of reasons.

(a) The eld is not allowed to have a value. For example, the root
node of a tree has no parent node. The fact that the eld is
NULL in this case is not due to missing information. As an-
other example, in programming languages, a null reference is
sometimes employed to mark the end of a sequence of objects.

(b) The eld was produced during an operation such as an arith-
metic or data manipulation operation.

3. The eld has a value, but it is not within the domain. For example,
a form requesting an ethnic group does not include the one to which
a person most closely identies. The NULL in this case represents
“none of the above” or “other.” On such a form, NULL could also
mean that one does not wish to answer the question, one does not
know the answer, one neglected to answer the question, or many other
possible explanations.

4. A eld value could have been inferred but was not inferred, because
of an overriding requirement. The example given here requires some
knowledge of SQL. Specically, it requires the outer join operation.
The outer join mandates that the additional (padded) columns of an
unmatched record be NULL even when one could infer values for the
columns. Consider the following SQL statements:

2The P=NP problem is an unsolved problem in computer science. It asks whether
every problem whose solution can be quickly veried can also be quickly solved, where
“quickly” means “achieved in a period of time that is a polynomial in the size of the
problem.”

Summer 2023



24

create table A(id int primary key, foo int default 0);
create table B(id int primary key, bar int default 0);
insert into A values(1, 10);
select * from A left join B on (A.id = B.id);

The result of the SQL statements above is the following:

id foo id bar
1 10 NULL NULL

(a) The second id eld in the result must be NULL because the join
condition did not hold in this case. It means that the A record
was not matched with any B record. This represents a situation
where a eld cannot have a value.

(b) The bar eld in the result could be inferred to be 0 because
of the default value for this column. In spite of this, the bar
eld in the result is NULL. One could argue that this is also a
situation where a eld cannot have a value. In this case, there
is no B record being joined, so it is not meaningful for it to have
any value, even the default value. On the other hand, the usual
purpose of a default value is that it is the value one should use
in the absence of any other value being available. That certainly
is true in this case, so there is also a good argument for using
the default value rather than NULL.

5. The eld value cannot be determined due to an exception. For ex-
ample, dividing 1 by 0 is clearly an exception since division by zero
is never dened for any number.

There are many other possibilities for the interpretation of noth-
ingness. During query processing, computations use a three-valued logic
which will introduce NULLs that have interpretations that are subtly dier-
ent from the interpretations of the NULLs that occurred in the expressions
being computed. For example, if NULL means that the value has not yet
been specied, then the result of join processing should be that there could
be a match but it is not yet known. By contrast, if NULL means “none

Washington Academy of Sciences



25

of the above,” then one could argue that two NULLs should match one
another.

One reason why the database notion of NULL is still useful in spite
of its semantic shortcomings has to do with query optimization. Unlike
programming languages which have relatively limited opportunities for op-
timization, there are substantial opportunities for optimizing queries. For
example, a query that lters the results as the last step could be optimized
so that the lter operation is performed much earlier in query processing,
well before operations such as joins are performed. While this has impor-
tant consequences for performance, it also means that standard program-
ming language features like throwing and catching exceptions are no longer
possible. By rearranging the processing steps the way databases do, one
could be in a situation where the exception is caught at a dierent place
in the computation than one would expect. In other words, the throw-
catch notion is only meaningful for a specic execution plan, so throwing
and catching exceptions within the processing of a query would mandate
a specic execution plan and eliminate many possibilities for query opti-
mization.

Still another kind of optimization is parallel processing (via multiple
threads) to obtain query results. When an exception is thrown in a parallel
context, it is unclear how the exception should be handled. Aside from
the issue of where the exception should be caught, there is also the issue
of whether other threads should be aected by the exception. The use of
NULL and NULL propagation rules allows query processing to be optimized
and parallelized, but at the cost of a notion of NULL that diers from the
one for programming languages as well as a logic that is three-valued rather
than two-valued.

Conclusion
The notion of nothingness has a long and complex history. It is both

a philosophical issue that continues to be argued and a pragmatic issue that
continues to have an impact on modern systems. We have given some idea
of the diculties faced by anyone attempting to specify the semantics of
nothingness in a way that satises all relevant interpretations and use cases,
while being compatible with the requirements for system performance.

Summer 2023



26

References
Cartlidge, J. (n.d.), A summary of Heidegger’s “What is Metaphysics?”

https://bit.ly/3FwAPzA

Codd, E.F. (1970). “A Relational Model of Data for Large Shared Data Banks.” Com-
munications of the ACM 13(6): 377-387.

Codd, E.F. (1990), The Relational Model for Database Management Version 2, Addison-
Wesley, 1990 (ISBN 0201141922).

Darwen, H. and Date, C.J. (2006), Databases, Types, and The Relational Model: The
Third Manifesto, 3rd edition, Addison-Wesley. (ISBN: 0-321-39942-0).

Gheverghese, J. (2011). The Crest of the Peacock: Non-European Roots of Mathematics
(Third ed.). Princeton UP. p. 86. ISBN 978-0-691-13526-7.

Goth, M. (2013). Translation of Heidegger’s “What is Metaphysics?” and other essays.
https://bit.ly/3MeNB9d

Graham, D.W. (2008). “Leucippus’ Atomism”. In Curd, Patricia; Graham, Daniel W.
(eds.). The Oxford Handbook of Presocratic Philosophy. Oxford University
Press. ISBN 978-0-19-514687-5.

Hegel, G.W.F. (1812-1816), Wissenschaft der Logik. https://bit.ly/47t41mt

Heidegger, M. (1927), Sein und Zeit (Being and Time).

Heidegger, M. (1929) “What is Metaphysics?”

Hoare, T. (2009). “Null References: The Billion Dollar Mistake.” InfoQ.com.

IEEE 754 (2019). IEEE Standard for Floating-Point Arithmetic. IEEE STD 754-2019.
IEEE. pp. 1–84. IEEE Computer Society (2019-07-22). https://bit.ly/47ckjAK

Inwood, M. (1999). Does the Nothing Noth? Royal Institute of Philosophy Supplements,
44: 271-290. http://bit.ly/3yLv6SS

Menninger, K. (1992). Number words and number symbols: a cultural history of num-
bers. Courier Dover Publications. pp. 399–404. ISBN 978-0-486-27096-8.

O’Connor, J. and Robertson, E. (2000). “Egyptian numerals”. mathshistory.st-
andrews.ac.uk. https://bit.ly/45N3JWz

Russell, B. (1995). History of Western Philosophy, Routledge ISBN 0-415-07854-7.

Sartre, J.-P. (1943), L’Ĺtre et le Néant (Being and Nothingness). Trans. Hazel E.
Barnes. New York: Washington Square Press, 1984.

Skordoulis, C.D., Koutalis, V. (2013). Tsaparlis, Georgios (ed.). Concepts of Matter in
Science Education. Springer. ISBN 978-94-007-5914-5.

Wallin, N.-B. (2002). “The History of Zero.” The Whitney and Betty Macmillan Center
for International and Area Studies at Yale. https://bit.ly/40kL9UM

Washington Academy of Sciences


